.arnegie Mellon University

Helnz

95-865:
Introduction to Neural Nets
and Deep Learning

George Chen

A few slides are by Phillip Isola

IM&AGENET

Over 10 million images, 1000 object classes

: FENT S Ha Tt

R B :.-'f.'; M !"‘

- . St (\
R Sl e LT

———r A ' -~ - '...J ...‘.—-‘

= W) e G2

-

den

: i’}r-;# S S ey

£y ; X
f'\. : - - _ s > -
o -S : X .

,ﬁv’l e g T Sy s ., TN Y

E;'. o'.
= T ¥
<

N o —

2011: Traditional computer vision achieves accuracy ~74%
2012: Initial deep neural network approach accuracy ~84%

2015 onwards: Deep learning achieves accuracy 96%-+

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 1JCV 2015,

'---

. » Top computer vision conferences (CVPR, IGCV, ECCV) are

o m =

Deep Learning Takeover

now nearly all about deep learning

e [op machine learning conferences (ICML, NIPS) have heaw/y

been taken over by deep learning

Heavily dominated by industry novv'

Extremely useful in practice: Go gle

Near human level image classification

including handwritten digit recognition) facebook
Near human level speech recognition amazon
Improvements in machine translation, text-to-speech

Self-driving cars
Better than humans at playing Go

Google DeepMin
St _

d’s_ AlphaGo vs Lee Sedol, 2016 -~

Is it all hype?

Fooling Neural Networks in the Physical
World with 3D Adversarial Objects

31 0ct 2017 - 3 min read — shared on Hacker News, Lobsters, Reddit, Twitter

We’ve developed an approach to generate 3D adversarial objects that reliably fool neural
networks in the real world, no matter how the objects are looked at.

¥ P e

-

Qm
1ng Neural Networks
A ﬁ the Real World

P 000/034 @ 4) —e I 3

Neural network based classifiers reach near-human performance in many tasks, and
they’re used in high risk, real world systems. Yet, these same neural networks are
particularly vulnerable to adversarial examples, carefully perturbed inputs that cause

Source: labsix

" ..,:' - A o XY § 2
2T b A g
+.007 x e
\f‘r-_, P _:n AR s ’;'_' N
\ > - y)- o 'y

panda adversarial gibbon
~58% confidence NoIse ~99% confidence

Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples.
ICLR 2015.

Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still
Advanced Al". September 16, 2015. (They're using the NeuralTalk image-to-caption software.)

Another Al Winter?

~1970’s: First Al winter over symbolic Al

~1980’s: Second Al winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts

B
About membership hledlum Sign in

ac Michael Jordan

 Michael I. Jordan is a Professor in the Department of Electrical Enginearing and Computer Sciences
' and tha Department of Statistics at UC Barkelay.

7 Apri8 - 16 min read

A
|‘ I ‘I
._..._ .--. | /H.

) ¢

Photo credit: Pcg Skorpinski

Artificial Intelligence—The Revolution
Hasn't Happened Yet

Artificial Intelligence (AT) is the mantra of the current era. The phrase is

intoned by technologists, academicians, journalists and venture capitalists

https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-
yet-be1dd812e1er

What is deep learning?

Slide by Phillip Isola

Classification
units

PIT /AIT

V4 /PIT

/4
=S NN
PIPTIPY i N
VIV S

@@C;)@""é@@@

Serre, 2014

Basic ldea

Brain/Machine | — “clown fish”

Slide by Phillip Isola

Object Recognition

Edges
\ Segments \
Texture “clown fish’
Parts /
Colors /
Feature extractors Classifier

Slide by Phillip Isola

Object Recognition

L earned
Edges
\ Segments
Texture “clown fish’
Parts
Colors /
Feature extractors Classifier

Slide by Phillip Isola

Neural Network

L earned

“clown fish”

Slide by Phillip Isola

Neural Network

L earned

“clown fish”

Slide by Phillip Isola

Deep Neural Network

L earned

“clown fish”

Slide by Phillip Isola

Crumpled Paper Analogy

‘ : -~

. binary Classification: 2 crumpled
sheets of papereegesponding tosthe
different'€lagses S8
deep learning: seriés (tlayers”) of
simple unfolding operations to try to
disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen

Representation Learning

Each layer’s output is another way we could represent the input data

| earned

“clown fish”

Representation Learning

Each layer’s output is another way we could represent the input data

| earned
o
[Z “clown fish”

\ o

o
o %, %,
& S

X Q/eé) 2

compare these 2 visualizations

Why Does Deep Learning Work?

Actually the ideas lbehind deep learning are old (~1980’s)
e Big data

amazoncom W K3 lgﬂ
NETFLIX “ fitbit G

e Better hardware

(intel)
AMD

CPU’s
& Moore’s law

e Better algorithms

Structure Present in Data Matters

Neural nets aren’t doing black magic

* |mage analysis: convolutional neural networks (convnets)
neatly incorporates basic image processing structure

* Time series analysis: recurrent neural networks (RNNSs)
iIncorporates ability to rememlber and forget things over time

e Note: text Is a time series

e Note: video Is a time series

Handwritten Digit
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net

Handwritten Digit Recognition

|
i
atten & i
treat as |
D vector I weighted sums activation
> : > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons) with 10 numbers layer final

output

Handwritten Digit Recognition

weighted sums
>

(parameterized (2D numpy array
Dy a weight of dimensions
matrix W and 784-by-10)
a bias (1D numpy array
W™ b with 10 entries)
length 784 vector “dense” layer

(784 input neurons) with 10 numlbers

input dense
(1D numpy array with 784 entries) (1D numpy array with 10 entries)

Handwritten Digit Recognition

dense [0]
dense|[|l]

np.dot(input, W[:, O]) + b[O]
np.dot(input, W[:, 1]) + b[1]

/83

dense[j] = » input[ilxW[i, j]

=0

welighted sums

(parameterized (2D numpy array + b[]]
by a weight of dimensions
matrix W and 784-by-10)
a bias (1D numpy array
W™ be with 10 entries)
1 784 vector “dense” layer

put neurons) with 10 numbers

input dense
34 entries) (1D numpy array with 10 entries)

Handwritten Digit Recognition

weighted sums
>

(parameterized
by a weight
matrix W and
a bias b)

length 784 vector “dense” layer
(784 input neurons) with 10 numbers

Handwritten Digit Recognition

|
i
atten & i
treat as |
D vector I weighted sums activation
> : > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons) with 10 numbers layer final

output

Handwritten Digit Recognition

Many different activation functions possible 4 4
3.5 3.5
Example: Rectified linear unit (RelLU) 4 4
zeros out entries that are negative 1 0
0.5 Rel.U 0.5
>
2 2
(can be
-4 0
dense_final = np.maximum(®, dense)|, thought of .
as post-
2 processing) | °
) S
“dense” layer “dense”
with 10 numbers layer final
dense output

dense final

Handwritten Digit Recognition

Many different activation functions possible 4 0.17

3.5 0.10
Example: softmax turns the entries in the 4 0.17
dense layer (prior to activation) into a -1 0.00

orobability distribution (using the “softmax” o5 Softmax
transformation) >

2 0.02
y (can be 0.00
dense exp = np.exp(dense) 3 thought of 0.06
dense exp /= np.sum(dense_exp) S| &S post-
dense_final = dense_exp - processing) 0'46

“dense” layer “dense’

with 10 numbers layer final

dense output

dense final

Handwritten Digit Recognition

|
i
atten & i
treat as |
D vector I weighted sums softmax
> i > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons) with 10 numbers layer final

output

Handwritten Digit Recognition

atten &
treat as

D vector
>

28x28 Image

dense layer with
10 neurons,
softmax activation,
parameters W, b

length 784 vector
(/84 input neurons)

Handwritten Digit Recognition

Demo part 1

Handwritten Digit Recognition

atten &
treat as

D vector
>

28x28 Image

dense layer with
10 neurons,
softmax activation,
parameters W, b

length 784 vector
(/84 input neurons)

Handwritten Digit Recognition

Training label: 6

flatten &
treat as
1D vector

: v

v

> — | Loss/“error” | = error

28x28 Image

dense layer with 1

10 neurons, log Pr(digit 6)
softmax activation,
parameters W, b

length 784 vector
(784 input neurons)

Handwritten Digit Recognition

Demo part 2

Handwritten Digit Recognition

Training label: 6

flatten &
treat as
1D vector

: v

v

> — | Loss/“error” | = error

28x28 Image

dense layer with 1

10 neurons, log Pr(digit 6)
softmax activation,
parameters W, b

length 784 vector
(784 input neurons)

Handwritten Digit Recognition

Training label: 6

R
l

28x28 Image

dense layer
length 784 vector with 512

(784 input neurons)
activation

v

— | Loss/“error”

dense layer with

— error

:

10 neurons, 109 Pr(digit 6)

neurons, RelLU softmax activation

Handwritten Digit Recognition

Demo part 3

Architecting Neural Nets

Increasing number of layers (depth) makes neural net more
complex

e (Can approximate more functions
 More parameters needed
* More training data may be needed

Designing neural net architectures iIs a bit of an art

e How to select the number of neurons for intermediate
layers?

e \ery common In practice: modify existing architectures
that are known to work well (e.g., VGG-16 for computer
vision/image processing)

Deep Learning

| earned

“clown fish”

e |nspired by biological neural nets but otherwise not the same
at all (biological neural nets do not work like deep nets)

e | earns a layered representation
* T[ries to get rid of manual feature engineering

* Need to design constraints for what features are learned
to account for structure in data (e.g., images, text, ...)

